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I. INTRODUCTION 
Rough set, as a mathematical theory for 

dealing with imprecise, uncertain and in- complete 

data, was first introduced by pawlak(1982). Its 

main idea is to use the known incomplete 

information or knowledge to appriximately describe 

the concept of imprecise or uncertain, or to deal 

with ambiguous phenomena and problems ac- 

cording to the results of observation and 

measurement. After more than 30 years of 

research, the theory of rough set has been 

continuously improved and widely ex- panded in 

applications, see Wu and Mi (2019). At present, it 

has been successfully applied in machine learning 

and knowledge discovery, information system 

analy- sis, data mining, decision support system, 

fault detection, process control, pattern recognition, 

etc. 

In [7],Bagirmaz et al. Introduced the 

concept of topological rough groups they ex- tended 

the notion of a topological group to include 

algebraic structures of rough groups. In addition 

they presented some examples and properties. 

In 2002, J.F.Peters developed the near set 

theory as a genealiztion of rough set the-ory. peters 

utilized the features of objects to develop the 

nearness of objects [23] and consequently, the 

classified our universal, set with respect to the 

object infor- mation available. The near set 

approach leads to partitions of ensembles of sample 

objects with measurable information content and an 

approach to feature selection. A probe function is a 

real valued function representing a feature of 

physical objects such as images or behaviours of 

individual biological organisms. 

The main purpose of this paper is to introduce 

some basic definitions and results about topological 

near groups and topological near subgroups. We 

also introduce the cartesian product of topological 

near groups. 

In this paper, we present near action and near 

homogenous spaces, and descuss some of their 

properties we also define a near kernal. We 

organise the paper as follows, In Scetion 2 we 

collect the needed material about near groups and 

near homomor- phisms. Then the definition of 

topological near groups and importet properties 

have been recalled in section 3, section 4 presents 

our main resulits where we introduce, near action 

and homogenous spaces. 

 

II. PRELIMINARIES 
In this section, some definitions and results about 

near sets, near groups and topo- logical groups used 

in this paper are given 

 

Object Description [21] 

Objects are known by their description. 

An object description is defined by means of a tuple 

of function values ψ(x) associated with an object x ∈ 

X . The important thing to notice is the choice of 

functions ψi ∈ B used to describe an object of inter- 

est. 

The intuition underlying a description ψ(x) is 

recording of measurements from sen- sors, where 

each sensor is modelled by a function ψi. 

 

Table 1: Description Symbols 

Symbol Interpretation 

ℜ 
O 

X 

x F B 

ψ 

L 

i 

ψi ψ(x) 

Set of real numbers 

Set of perceptual objects 

X ⊆ O,set of sample objects 

x ∈ O,sample perceptual object 

A set of functions representing object 

features, 

B ⊆ F,set of functions representing 

object features 

ψ : O → ℜL
, object description 

L is a description length 

i ≤ L 
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ψi ∈ B, where ψi : X → ℜ,probe 

function, 

ψ(x)=(ψ1(x), ψ2(x), ψ3(x), , ψi(x), , 

ψL(x)). 

Assume that B ⊆ F is a given set of 

functions representing features of sample objects X 

∈ O. Let φi ∈ B, where φi :O → ℜ. The value of 

ψi(x) is a measurement associated with a feature of 

an object x ∈ X . The function ψi is called a 

probe. In combination, the functions representing 

object features provide a basis for an object 

description ψ : O → ℜL
, a vector containing 

measurements (returned values) associated with each 

functional value ψi(x), where the description length 

|ψ| = L. 

Object Description : ψ(x) = (ψ1(x), ψ2(x),....., ψi(x),

 ψL(x)) 

 

Nearness Objects [21] 

Sample objects X ⊆ O are near each other if, and 

only if the objects have similar descriptions. Recall 

that each description ψ
1 

defines a description of an 

object. Then let ∆ψi denote 

 

∆ψi = ψi(x
′
) − ψi(x), 

where x, x
′
 ∈ O. The difference ∆ψ leads to a 

definition of the indiscernibility rela- tion ∼B 

introduced by Zdzislaw Pawlak [12]. 

 

Table 2: Set, Relation, Probe Function Symbols 

Symbol Interpretation 

∼B 

[x]B 

O/ ∼B 

ξB 

∆ψi 

{(x, x
′
) | f (x)=  f (x

′
) ∀ f ∈ 

B,},indiscernibility relation 

[x]B={x ∈ X | x
′
 ∼B x},elementary 

granule (class) 

O/ ∼B= {[x]B |x ∈ O},quotient set 

Partition ξB = O/ ∼B 

∆ψi = ψi(x
′
) − ψi(x),probe function 

difference. 

 

Definition 2.1. [21] 

Let X, X 
′
 ⊆ O, B ⊆ F. Set X is near X 

′
 if and only if 

there exists x ∈ X, x
′
 ∈ X 

′
, 

ψi ∈ B such that x ∼ψi x
′
. 

Remark 2.2. [21] If X is near X 
′
, then X is a near set 

relative to X 
′
 and X 

′
 is a near set relative to X. 

Definition 2.3. [21] Let X ⊆ O and x, x
′
 ∈ X. If x is 

near x
′
, then X is called a near set relative to itself or 

the reflexive nearness of X. 

Definition 2.4. [21] Let B ⊆ F be a set of functions 

representing features of objects x, x
′
 ∈ O. Objects x, 

x
′
 are called minimally near each other if there 

exists ψi ∈ B such that x ∼{ψi} x
′
, ∆ψi = 0. 

Definition 2.5. [21] Let x, x
′
 ∈ O, B ⊆ F. Then 

∼B= {(x, x
′
) ∈ O × O|∀ψi ∈ B, ∆ψi  = 0} 

is called the indiscernibility relation on O,where the 

description length i ≤ |ψ|. 

Theorem 2.6. [21] The objects in a class [x]B ∈ ξB 

are near objects. 

 

Definition 2.7. [3] A topological group is a group (G, 

∗) together with a topology on G that satisfies the 

following two properties: 

(1) The mapping f : G × G → G defined by f 

(x, y) = xy is continuous when G is endowed with 

the product topology. 

(2) The inverse mapping g : G → G defined 

by g(x) = x
−1

 is continuous 

We remark that item (1) is equivalent to the statement 

that, whenever W ⊆ G is open, and W ∈ N(x1x2), 

then there exists open sets V1 and V2 such that V1 

∈ N(x1);V2 ∈ N(x2) and V1V2 = {x1x2/x1 ∈ V1; x2 

∈ V2} ⊆ W. Also, item (2) is equivalent to 

showing that whenever V ⊆ G is open, then V 
−1

 = 

{x
−1

|x ∈ V } ∈ N(x
−1

) is open. Let G be a 

topological group and let H be a subgroup of G. 

Then H becomes a 

topological group when endowed with the topology 

induced by G. 

 

Definition 2.8. [12] Let NAS=(O, F, ∼Br , Nr, νNr ), be 

a nearness approximation space and let · be a binary 

operation defined on O. A subset G of perceptual 

objects O is called a near group if the following 

properties are satisfied 

(1) ∀x, y ∈ G, x · y ∈ Nr(B)∗G 

(2) ∀x, y, z ∈ G, (x · y) · z = x · (y · z) property holds in 

Nr(B)∗G. 

(3) ∃e ∈ Nr(B)∗G such that ∀x ∈ G, x · e = e · x = x, e 

is called the near identity element of the group G. 
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(4) ∀x ∈ G, ∃y ∈ G such that , x · y = y · x = e, y is 

called the near inverse element of x in G. 

 

Proposition 2.9. [12] Let G be a near group 

(1) ∀x, y ∈ H, x · y ∈ Nr(B)∗H 

(2) ∀x ∈ H, x
−1

 ∈ H 

(3) There is one and only one identity element in 

near group G. 

(4) ∀x ∈ G, there is only one y such that x · y = y · x 

= e; we denote it by x
−1

. (5) (x
−1

)
−1

 = x. 

(6) (x · y)
−1

 = y
−1

 · x
−1

. 

 

Definition 2.10. [12] Let G1 ⊂ O1, G2 ⊂ O2 be 

near groups. If there exists a surjection ϕ : 

Nr1 (B)∗G1 → ϕ : Nr2 (B)∗G2 such that ϕ(x · 

y) = ϕ(x) ◦ ϕ(y) for all x, y ∈ Nr1 (B)∗G1 then ϕ 

is called a near homomorphism and G1, G2 are 

called near homomorphic groups. 

 

Definition 2.11. [17] A near group G with a 

topology τ on Nr(B)∗G is called a topological near 

group if the following hold 

(a) f : G × G → Nr(B)∗G defined by f (a, b) = ab 

is continuous with repect to prod- uct topology on G 

× G and the topolgy τG on G induced by τ. 

(b) τ : G → G defined by τ(a) = a
−1

 is 

continuous with respect to the topology τG 

on G induced by τ. 

 

Definition 2.12. [17] Let G be a topological near 

group. For a fixed element a in G, we define 

(i) A mapping La : G → Nr(B)∗G which is 

defined by La(x) = ax, is called a left 

transformation from G is to Nr(B)∗G 

(ii) A mapping Ra : G → Nr(B)∗G which is 

defined by Ra(x) = xa, is called a right 

transformation from G is to Nr(B)∗G 

Definition 2.13. [17] Let G be a topological near 

group. Then 

(a) The left transformation map La : G → Nr(B)∗G 

is continuous and one - to - one. 

(b) The right transformation map Ra : G → 

Nr(B)∗G is continuous and one - to - one. 

(c) The inverse mapping τ : G → G is a 

homeomorphisms for all x ∈ G 

 

III. CARTESIAN PRODUCT OF 

TOPOLOGICAL NEAR GROUPS 
In this section, we discuss some results on 

cartesian products and introduce near action and 

near homogenous spaces in topology using near 

groups. 

(X1, F1, ∼Br1 
, Nr1 ) and (X2, F2, ∼Br2 

, Nr2 ) be two 

nearness approximation spaces and let ∗1 and ∗2 

be two binary operations on X1 and X2 respectively. 

For x, x1 ∈ X1 and y, y1 ∈ X2. we have (x, y)(x
′
, y

′
) ∈ 

X1 × X2 

Define ∗ as, (x, y) ∗ (x1, y1) = (x ∗1 x1, y ∗2 y1) 

Then ∗ is a binary operation on X1 × X2. Indeed 

that the product of equivalence relation ∼Br1 
and 

∼Br2 
is also an equivalence relation on X1 × X2 

 

Theorem 3.1. Let G1 ⊆ X1 anf G2 ⊆ X2 be two 

near groups. Then the cartesian product G1 × G2 is 

also a near group 

For, 

(i) ∀(a1, b1), (a2, b2) ∈ G1 × G2, 

∀(a1, b1) ∗ (a2, b2) = (a1 ∗1 a2; b1 ∗2 b2) ∈ Nr(B)∗G1 × 

Nr(B)∗G2 

(ii) Associative law is satisfied forall 

elements in Nr(B)∗G1 × Nr(B)∗G2. 

(iii) ∃ an identity element (e, e
′
) ∈ Nr(B)∗G1 

×Nr(B)∗G2 such that ∀(x, x
′
) ∈ G1 × G2, (x, x

′
) × (e, e

′
) 

= (e, e
′
) × (x, x

′
) = (ex, e

′
x

′
) = (x, x

′
) 

(iv) ∀(x, x
′
) ∈ G1 × G2, ∃ an element (y, y

′
) ∈ G1 

× G2 such that (x, x
′
) ∗ (y, y

′
) = (x ∗1 y, x

′
 ∗2 y

′
 ) = (y ∗1 

x, y
′
 ∗2 x

′
) = (y, y

′
) ∗ (x, x

′
) = (e, e

′
). 

 

Example 3.2. Let X = {0, 1, 2} be a set of perceptual 

objects,B = {ψ1 , ψ2 , ψ3}be a set of functions (∗) be 

the binary operation, addition modulo 3. Sample 

valuesnof the probe function {ψi} are defined as, 

ψ1 : X → V1 de f ined by ψ1(n) = n(n − 1) ∀n 

∈ X 

ψ2 : X → V2 de f ined by ψ2(n) = n
2
 ∀n ∈ X 

ψ3 : X → V3 de f ined by ψ3(n) = n
2
 − n

3
 ∀n 

∈ X 

 

 
 

Let us construct the equivalence classes for each 

combination, thus equivalence clsses are defined 

as, 
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[0]{ψ1} ={x
′
 ∈ X |ψ1(x

′
) = ψ1(0) = 0}, 

= {0, 1} 

[2]{ψ1} ={x
′
 ∈ X |ψ1(x

′
) = ψ1(2) = 2}, 

= {2} 

Hence we have ξ{ψ1} = {[0]{ψ1}, [2]{ψ1}} 

[0]{ψ2} ={x
′
 ∈ X |ψ2(x

′
) = ψ2(0) = 0}, 

= {0} 

[1]{ψ2} ={x
′
 ∈ X |ψ2(x

′
) = ψ2(1) = 1}, 

= {1} 

[2]{ψ2} ={x
′
 ∈ X |ψ2(x

′
) = ψ2(2) = 4}, 

= {2} 

Hence we have ξ{ψ2} = {[0]{ψ2}, [1]{ψ2}, 

[2]{ψ2}} 

 

[0]{ψ3} ={x
′
 ∈ X |ψ3(x

′
) = ψ3(0) = 0}, 

= {0} 

[2]{ψ3} ={x
′
 ∈ X |ψ3(x

′
) = ψ3(2) = −4}, 

= {2} 

Hence we have ξ{ψ3} = {[0]{ψ3}, [2]{ψ3}} 

Therefore, for r = 1, a classification of X is N1(B) = 

{ξ{ψ1}, ξ{ψ2}, ξ{ψ3}} 

Let G = {1, 2} be a subset of the perceptual objects, 

Nr(B)
∗

G = x:[x]ψi∩G/=0/ [x]{ψi} 

= {{0, 1} ∪ {2} ∪ {1} ∪ {2} ∪ {0, 1} ∪ {2}} 

= {0, 1, 2} 

The cartesian product X × X as follows 

X × X = {(0, 0), (2, 2), (1, 1), (0, 1), (0, 2), (1, 2), (2, 1), (1, 

0), (2, 0)} 

 

Then the new classification is, {{[0]ψ1 , [2]ψ1 }, 

{[0]ψ2 , [1]ψ2 , [2]ψ2 }, {[0]ψ3 , [2]ψ3 }} Consider the 

near group G = {1, 2} then the cartesian product G × 

G is 

G × G = {(1, 1)(1, 2)(2, 2)(2, 1)} 

where Nr(B)∗(G × G) = Nr(B)∗G × Nr(B)∗G = X × 

X. From the definition of a neargroup, we have 

that, 

(i) The multiplication of elements in G×G is 

closed under Nr(B)∗G×Nr(B)∗G,where 

∗1 and ∗2 are 

(1, 1) ∗ (1, 2) = (2, 0) 

(1, 1) ∗ (2, 2) = (0, 0) 

(1, 1) ∗ (2, 1) = (0, 2) 

(1, 2) ∗ (1, 1) = (2, 0) 

(1, 2) ∗ (2, 2) = (0, 1) 

(1, 2) ∗ (2, 1) = (0, 0) 

(2, 2) ∗ (1, 1) = (0, 0) 

(2, 2) ∗ (1, 2) = (0, 1) 

(2, 2) ∗ (2, 1) = (1, 0) 

(2, 1) ∗ (1, 1) = (0, 2) 

(2, 1) ∗ (1, 2) = (0, 0) 

(2, 1) ∗ (2, 2) = (1, 0) 

 

(ii) The associative law is satisfied. 

(iii) There exists (0, 0) ∈ Nr(B)∗G × Nr(B)∗G 

such that for every (g, g
′
) ∈ G × G, we have (0, 0) ∗ (g, 

g
′
) = (g, g

′
) 

(iv) For every element of G × G, ∃ an inverse 

element in G × G, where 

(1, 1)
−1

 = (2, 2) ∈ G × G, 

(2, 1)
−1

 = (1, 2) ∈ G × G 

(1, 2)
−1

 = (2, 1) ∈ G × G 

(2, 2)
−1

 = (1, 1) ∈ G × G 

Hence G × G is a near group. 

 

Example 3.3. Let U = {0, 1, 2} be a set of perceptual 

objects,B = {ψ1 , ψ2 , ψ3}be a set of functions (∗) be 

the binary operation, addition modulo 3. Sample 

values of the probe function {ψi} are defined as, 

ψ1 : U → V1 de f ined by ψ1(n) = n(n − 1) ∀n 

∈ U 

ψ2 : U → V2 de f ined by ψ2(n) = n(n − 1)(n − 

2) ∀n ∈ U 

ψ3 : U → V3 de f ined by ψ3(n) = n(n − 1)(n − 

2)(n − 3) ∀n ∈ U 

 

 
 

Let us construct the equivalence classes for each 

combination, thus equivalence clsses are defined 

as, 

[0]{ψ1} ={x
′
 ∈ X |ψ1(x

′
) = ψ1(0) = 0}, 

= {0, 1} 

[2]{ψ1} ={x
′
 ∈ X |ψ1(x

′
) = ψ1(2) = 2}, 

= {2} 

Hence we have ξ{ψ1} = {[0]{ψ1}, [2]{ψ1}} 

[0]{ψ2} ={x
′
 ∈  X |ψ2(x

′
) = ψ2(0) = 0}, 
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= {0, 1, 2} 

Hence we have ξ{ψ2} = {[0]{ψ2}} 

[0]{ψ3} ={x
′
 ∈  X |ψ3(x

′
) = ψ3(0) = 0}, 

= {0, 1, 2} 

Hence we have ξ{ψ3}  = {[0]{ψ3}} Therefore, for 

r = 1, a classification of X is N1(B) = {ξ{ψ1}, 

ξ{ψ2}, ξ{ψ3}} 

Let G = {1, 2} be a subset of the perceptual objects, 

Nr(B)
∗

G = 
S

x:[x]ψi∩G/=0/ [x]{ψi} 

 

= {{0, 1} ∪  {2} ∪  {0, 1, 2} ∪  {0, 1, 2}} 

= {0, 1, 2} 

 

From Definition 

(1) ∀ a, b ∈  G, ab ∈  Nr(B)
∗

(G) 

(2) The Property ∀ a, b, c ∈  G, (a · b) · c = a · (b · c) holds 

in Nr(B)
∗
(G) 

(3) ∃ 0 ∈  Nr(B)
∗

(G) such that ∀ a ∈  G, a · 0 = 0 · a = a 

(4) ∀ a ∈  G, ∃ b ∈  G such that a · b = b · a = e(b is 

called a near inverse of a in G) G is a near group 

Let τ = {0/ , Nr(B)
∗
(G), {1}, {2}, {1, 2}}on 

Nr(B)
∗
(G) 

Then, τG = {0/ , G, {1}, {2}} is the relative 

topologyon G From Def (topological near 

group) 

(a) 1 ∗  1 = 2, for T ∈  N(2) ⊆  τ, there exist open set U 

= {1} ∈  N(1) ⊆ τG, such that UU ⊆ T 

1 ∗  2 = 0, for T ∈  N(0) ⊆  τ, there exist open set U 

= {1} ∈  N(1) ⊆ τG,and 

V = {2} ∈  N(2) ⊆ τG such that UV ⊆ T 

2 ∗  2 = 1, for T ∈  N(1) ⊆  τ, there exist open 

set U = {2} ∈  N(2) ⊆ τG, such that UU ⊆ T 

(b) {1}
−1 

= {2} is open 

{2}
−1 

= {1} is open 

 

Therefore G is a topological near group. 

Hence the product of topological near group we 

have 

τ = {0/ , Nr(B)
∗
G, {1}, {2}, {1, 2}} as a topology 

on Nr(B)
∗
G. 

then τ × τ is the product topology of Nr(B)
∗

G × 

Nr(B)
∗

G. Also we have 

τG = {0/ , G, {1}, {2}, {1, 2}} as a relative 

topology on G, then τG × τG  a product topology on 

G × G is induced by τ × τ. 

Therefore consider the multiplication map 

f : (G × G)×(G × G) → Nr(B)
∗

G ×Nr(B)
∗

G. This 

map is continuous with respect 

 

to the topology τ × τ and product topology on (G × 

G) × (G × G). Now, consider the inverse map τ : G × 

G → G × G. This map is continuous. Hence G × G is 

a topological near group. 

 

IV. NEAR ACTION AND NEAR 

HOMEOGENOUS SPACES IN CLAS- 

SICAL SET TOPOLOGY 
This section deals with near action and near 

homeogenous spaces in classical set topology. 

Let (X1, F1, ∼Br1 
, Nr1 , νNr1 

) and (X2, F2, ∼Br2 
, Nr2 , 

νNr2 
) be a nearness approxima- 

tion spaces. Let G1 ⊆ X1 and G2 ⊆ X2 be 

topological near groups such that τ1 and τ2 are 

topologies on Nr(B)
∗

G1 and Nr(B)
∗

G2, 

respectively inducing τG1 and τG2 on G1 and G2 

respectively, 

A mapping f : Nr(B)
∗

G1 → Nr(B)
∗

G2 is called a 

topological near group homomor- phism, if f is a 

near homomorphism and continuous with respect 

to the topology τ2 on Nr(B)
∗

G2 inducing τG2 on G2 

and the topology τ1 on Nr(B)
∗

G1 inducing τG1 on 

G1. 

A topological near group homomorphism f : 

Nr(B)
∗

G1 → Nr(B)
∗

G2 is called a topological near 

group homeomorphism f 
−1

 : Nr(B)
∗

G2 → 

Nr(B)
∗

G1 such that f 
−1 

◦ f = 1Nr (B)∗ G1 . 

Let (X, F, ∼Br , Nr, νNr ) be an approximation space.  

Assume that, G and X are 

two subsets of U such that G is a topological near 

group,and X is a topological near space inducing the 

topology near space X i.e. near set with ordinary 

topology. Then we are ready to give the definition of 

the action of a near group G on a near space is given. 

 

Definition 4.1. Let (X1, F1, ∼Br1 
, Nr1 , νNr1 

) and (X2, 

F2, ∼Br2 
, Nr2 , νNr2 

) be near- ness approximation 

spaces and ∗ 1, ∗ 2 be binary operations on X1 and X2 

respec- tively, let G1 ⊆ X1 and G2 ⊆ X2 be two near 

groups. If the mapping 

 

f : Nr(B)
∗

G1 → Nr(B)
∗

G2 satisfies that f (x ∗ 1 y) 

= f (x) ∗ 2 f (y), for all x, y ∈  

Nr(B)
∗

G1 then f is called a near homomorphism. 

 

Definition 4.2. Let G1 and G2 be two near 

groups. A near homomorphism f : 

Nr(B)
∗

G1 → Nr(B)
∗

G2 is said to be : 

(a) a near epimorphism if f : Nr(B)
∗

G1 → 

Nr(B)
∗

G2 is onto 

(b) a near monomorphism if f : Nr(B)
∗

G1 → 

Nr(B)
∗

G2 is one - to- one 

(c) a near isomorphism if f : Nr(B)
∗

G1 → 

Nr(B)
∗

G2 is both onto and one-to-one. 
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    Definition 4.3. A continuous map f : Nr(B)
∗

G×X 

→ X (resp f : X ×Nr(B)
∗

G → X ) is called a left 

(resp right) near action of G on X, if it satisfies the 

following con- ditions. 

(a) g(g
′
x) = (gg

′
)x (resp. ((xg)g

′
) = x(gg

′
)), for 

all g, g
′
 ∈  Nr(B)

∗
G and x ∈  X 

(b) ex = x (resp. xe = x), for every x ∈  X, 

where e ∈  Nr(B)
∗

G is the near identity. Then the near 

set X is called a near G- space. 

The action f is said to be effective if gx = g
′
x, for 

every x ∈  X ⇒  g = g
′
. In addition the action f is said 

to be transitive if for every x, x
′
 ∈  X there exists g ∈  

Nr(B)
∗

G such that gx = x
′
 

 

Definition 4.4. Let X be a near G- space. Then X is 

said to be topologically near homogeneous if for all x, 

y ∈  X, there is a topological homeomorphism f : X 

→ X such that f (x) = y. 

Proposition 4.5. Let G be a topological near group 

and X be a near G-space. Then the left 

transformation map Lg : X → X (resp right 

transformation map Rg : X → X), for every g ∈  

G,which is defined Lg(x) = gx (Rg(x) = xg), is a 

topological homeomorphism. 

 

Proof. The continuity of the action f implies the 

continuity of Lg. The continuous 

(a) and (b) in Definition 4.3 are respectively 

equivalent to 

(i) Lg ◦ Lg′ = Lgg′ 

(ii) Le = 1X . 

Therefore , the maps Lg and Lg
−1 

are inverse of each 

other. Thus, Lg is a topological homeomorphism 

from X toX . 

Note that, the left (resp.right)transformation map 

Lg(Rg) : X → X ,is not topolog- ically 

homomorphism for every g ∈  Nr(B)
∗

G. This is true 

only in the case that Nr(B)
∗

G is a group. 

Corollary 4.6. Let G be topological near group. 

Then for every open set O in X and g ∈  G, Lg(O) = 

gO is open in X 

Proof. By Theorem 4.5, Lg : X → X is a topological 

homeomorphism. Thus Lg(A) = gO is a open set in 

X 

Theorem 4.7. Let G be a topological near group 

such that Nr(B)
∗

G is a group. For any open subset O 

of Nr(B)
∗

G, if A is a subset of Nr(B)
∗

G, then 

AO(respectively OA) is open in Nr(B)
∗

G. 

Proof. In actual fact Nr(B)
∗

G is a group implies 

G acts on itself. Thus for ev- ery g ∈  Nr(B)
∗
G, Lg 

is a topological homeomorphism. The rest of proof 

follows immediately from left (right) 

transformation. Because that AO = a∈A La(O) and 

OA = a∈A Ra(O). is open in Nr(B)
∗

G. 

Theorem 4.8. Let G be an topological near group 

such that Nr(B)
∗

G is a group. Let H be a sub 

neargroup of G such that Nr(B)
∗

H is closed under 

multiplication. If there is an open set O in G such that 

e ∈  O and O ⊆  H, then Nr(B)
∗

H is an open set in 

Nr(B)
∗

G. 

Proof. Let O be a non-empty open set in G such 

that O ⊆ H and e ∈  O. Then for every h ∈  

Nr(B)
∗

H,Lh(O) = hO is open in Nr(B)
∗

G. Hence 

Nr(B)
∗

H = h∈ Nr (B)∗ G hO is open in Nr(B)
∗

G. 

Theorem 4.9. Let G be a topological near group 

such that Nr(B)
∗

G is a group and let H be a sub 

neargroup of G. Let H be a sub neargroup of G. Let 

O be an open set in G such that O ⊆  H. Then for 

every h ∈  H ,hO is an open set in Nr(B)
∗

H 

 

Proof. Since Nr(B)
∗

H ⊆ Nr(B)
∗

G and Nr(B)
∗

G is a 

group, Lh is a topological homeomorphism. By the 

definition of left transformation, Lh(O) = hO is 

open in Nr(B)
∗

G the fact that O ⊆ H implies hO ∈  

Nr(B)
∗

H. Hence, hO is open in Nr(B)
∗

H. 

 

Definition 4.10. Let G1 and G2 be topological near 

groups, f : Nr(B)
∗

G1 → Nr(B)
∗

G2 be a topological 

near group homomorphism and let e2 be the near 

iden- tity element of G2. Then 

Ker( f ) = {g ∈  Nr(B)
∗

G1 : f (g) = e2} is called the 

near kernal associated to the map f . 

Theorem 4.11. Let f be a topological near group 

homomorphism from Nr(B)
∗

G1 to Nr(B)
∗

G2. Then 

the near kernal is a normal sub neargroup of 

Nr(B)
∗

G1. 

Proof. Let ∗  and ∗ 1 be the binary operation in 

G1 and G2 respectively. Since 

f (e1) = e2, e1 ∈  ker( f ). ker( f ) 

and f (y) = e2 

0/ For every x, y ∈  ker( f ) , we have f (x) = e2 

 

(a) Since f (x ∗  y) = f (x) ∗ 1 f (y) = e2, we have x ∗  y 

∈  ker( f ) 

(b) Also f (x
−1

) = ( f (x))
−1

 = (e2)
−1

. 

Hence ker( f ) is a sub neargroup of G1 

(c) For every x ∈  G1 and r ∈  ker( f ), we have f 

(x ∗  r ∗  x
−1

) = f (x)∗ 1 f (r)∗ 1 f (x
−1

) = f (x) ∗ 1 e2 ∗ 1 f 

(x
−1

) = f (x) ∗ 1 ( f (x))
−1

 = e2. Therefore, x ∗  r ∗  x
−1

 

∈  ker( f ) thus ker( f ) is a normal sub neargroup of 

G1. 

 

Example 4.12. Consider the map f : Nr(B)
∗

GU 

→ Nr(B)
∗

GX , where G1 and G2 are near groups as 

above respectively, 

Define f as follows, 

f (0) = 0, f (1) = 0, f (2) = 0 

clearly, f is a continuous and homomorphism. 

Hence f is a topological near group homomorphism 

from Def 4.10, it is easy to see that ker( f ) = {0, 1, 2} 
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is a subset of 

Nr(B)
∗

GU . Moreover ker( f ) is a normal sub 

neargroup of Nr(B)
∗

GU . 

 

Definition 4.13. Let G be a topological near 

group and B ⊆ τ be a base for τ. 

For g ∈  G, the family 

 

Bg = {O ∩ G : O ∈  B, g ∈  O} ⊆  B is called a base at g 

in τG. 

Theorem 4.14. Let G be a topological near group 

such that the identity ele- ment e ∈  G and Nr(B)
∗

G 

is Closed under mulitiplication. Let G be an open set 

in Nr(B)
∗

G. For g ∈  G the base of g in Nr(B)
∗

G is 

equal to 

 

Bg = {gO : O ∈  Be} 

where Be is the base of the identity e in τG 

 

Proof. Since g ∈  G, we have g ∈  Nr(B)
∗

G. Let O1 

be an open set in Nr(B)
∗

G and let g ∈  O1. Since e ∈  

G,and G is a topological near group, there are two 

open sets O2 and O3 such that g ∈  O2, e ∈  O3 and f 

(O2 ×O3) ⊆  O1. We have G is an open set in τ. Then 

O3 is a neighbourhood of e in τ. Then there is a basic 

open set O ∈  Be such that e ∈  O ⊆  O3. Hence Lg(O) 

= gO ⊆  f (O2 × O) ⊆  f (O2 × O3) ⊆  O1. 

Definition 4.15. Let G be a neargroup and A ⊂ 

G.Then A isnsymmetric if A = 

A−1 

Proposition 4.16. Let G be a topological near 

group. if e ∈  G, then for each open neighbourhood 

O of e in G, there exists a symmetric open 

neighbourhood P of e in G such that P
2
 ∩ G ⊂ O 

Proof. Take an arbitrary open neighbourhood O of 

e in G. Then there exists an open neighbourhood W 

of e in Nr(B)
∗

G such that O = W ∩ G. Since f : G × G 

→ Nr(B)
∗

G is continuous at point (e, e) and the 

inverse mapping is a homeomorphism, there exists a 

symmetric open neighbourhood P of e in G such that 

P
2
 ⊂  W :; Hence P

2
 ∩ G ⊂ O. 

 

Proposition 4.17. Let f be a near homomorphism 

between near groups G1 and G2. If G1 is a 

topological group, then G2 is also a topological 

group. 

Proof. It suffices to prove that G
2
 = G2. Take 

arbitrary x, y ∈  G2. Then, there eists g, h ∈  G1 such 

that f (g) = x, f (h) = y hence, f (gh) = f (g) f (h) = xy. 

Since G1 is a topological group, it follows that gh ∈  

G1; thus f (gh) ∈  G2. i.e xy ∈  G2. Therefore, G2 is a 

topological group. 
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